
Intel® Distribution for Python*
Scaling HPC and Big Data
Sergey Maidanov
Software Engineering Manager for

Intel® Distribution for Python*

Quick Facts
• Released Intel® Distribution for Python* in Sep’16

• Out-of-the-box experience in HPC and Data Science, pip and conda support
• Near-native performance for Linear Algebra, initial optimizations in FFT and NumExpr
• Introduced TBB for threading composability, random_intel for fast RNG, pyDAAL

• Update release in Oct’16
• Greater compatibility with Anaconda*
• Performance and usability enhancements
• Neural networks support in pyDAAL
• Docker images

• Update 2 release in Feb’17
• Memory optimizations in NumPy
• Umath optimizations in NumPy
• NumPy and SciPy FFT improvements
• Scikit-learn optimizations
• New pyDAAL features

What Problems We Solve:
Scalable Performance

Make Python usable beyond prototyping environment by
scaling out to HPC and Big Data environments

What Problems We Solve:
Ease of Use

4

“Any articles I found on your site that
related to actually using the MKL for
compiling something were overly
technical. I couldn't figure out what
the heck some of the things were
doing or talking about.“ – Intel® Parallel Studio

2015 Beta Survey Response

https://software.intel.com/en-us/forums/intel-math-kernel-library/topic/280832

https://software.intel.com/en-us/articles/building-numpyscipy-with-intel-mkl-and-intel-fortran-on-windows

https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl

Why Yet Another Python
Distribution?

Intel® Xeon® Processors Intel® Xeon Phi™ Product Family

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017;. Hardware: Xeon: Intel
Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Xeon Phi: Intel Intel® Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Mature AVX2 instructions based product New AVX512 instructions based product

Scaling To HPC & Big Data
Environments

• Hardware and software efficiency crucial in production (Perf/Watt, etc.)

• Efficiency = Parallelism
– Instruction Level Parallelism with effective memory access patterns
– SIMD
– Multi-threading
– Multi-node

Roofline Performance Model*

Arithmetic Intensity

SpMVBLAS1

Stencils

FFT

BLAS3 Particle
Methods

Low High

G
fl

o
p

/s

Peak Gflop/s

* Roofline Performance Model https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Intel® Xeon Phi™ x200
(Knights Landing) processor

Binary-compatible
with

Intel® Xeon® processors

Server Processor

High-
Performance

Memory

Over 5x
STREAM vs. DDR43

Up to

16 GB
at launch

NUMA
support

60+ cores

3+ Teraflops1

3x Single-
Thread2

2-D Core Mesh

Cache Coherency

DDR4

Capacity
Comparable

to Intel®
Xeon®

Processors

Integrated Fabric

Architectural Enhancements = ManyX Performance

 14nm process technology

 4 Threads/Core

 Deep Out-of-Order Buffers

 Gather/Scatter

 Better Branch Prediction

 Higher Cache Bandwidth

… and many more

Core

Based on
Intel® Atom™ core (based

on Silvermont microarchitecture)
with Enhancements for HPC

From SSE or AVX to AVX-512:
Setting Right Expectations

• 2x vector length is typically <2x performance boost

– Applications have scalar sections, so are subject to Amdahl’s Law

– Some applications are limited by access to data

• If throughput bound, MCDRAM may help

• If latency bound, prefetching may help

– Loops may need larger trip counts to get full benefit

• Gains from newly vectorized loops can be large

• Application hotspots may change significantly between AVX and
AVX512 codes

Efficiency = Parallelism

• CPython as interpreter inhibits parallelism but…

• … Overall Python tools evolved far toward unlocking parallelism

Packages (numpy*,
scipy*, scikit-learn*,

etc.) accelerated with
MKL, DAAL, IPP

Composable multi-
threading with Intel®

TBB and Dask*

Multi-node
parallelism with

mpi4py* accelerated
with Intel® MPI*

Language extensions
for vectorization &

multi-threading
(Cython*, Numba*)

Integration with Big Data
platforms and Machine
Learning frameworks
(pySpark*, Theano*,
TensorFlow*, etc.)

Mixed language
profiling with Intel®
VTune™ Amplifier

Out-of-the-box performance with
accelerated numerical packages

Widespread optimizations in
NumPy & SciPy FFT

• Up to 60x improvement in FFT for the range of different use cases in NumPy and SciPy

0

10

20

30

40

50

60

C
o

m
p

le
x1

2
8

C
o

m
p

le
x6

4

Fl
o

at
6

4

Fl
o

at
3

2

C
o

m
p

le
x1

2
8

C
o

m
p

le
x1

2
8

C
o

m
p

le
x6

4

Fl
o

at
6

4

Fl
o

at
3

2

C
o

m
p

le
x1

2
8

C
o

m
p

le
x6

4

Fl
o

at
6

4

Fl
o

at
3

2

C
o

m
p

le
x1

2
8

C
o

m
p

le
x1

2
8

Fl
o

at
6

4

Fl
o

at
6

4

C
o

m
p

le
x1

2
8

2D FFT 2D FFT 2D FFT 2D FFT FFT Row FFT Col FFT Col FFT Row FFT Col 2D FFT
Inplace

2D FFT
Inplace

2D FFT
Inplace

2D FFT
Inplace

FFT Row
Inplace

FFT Col
Inplace

FFT Row
Inplace

FFT Col
Inplace

ND FFT
Inplace

NumPy NumPy NumPy NumPy NumPy NumPy NumPy NumPy NumPy SciPy SciPy SciPy SciPy SciPy SciPy SciPy SciPy SciPy

FFT Performance Improvements
Intel(R) Distribution for Python* 2017 Update 2/Update 1

Memory optimizations for
NumPy arrays

• Optimized array allocation/reallocation, copy/move
• Memory alignment and data copy vectorization & threading

0

10

20

30

40

50

60

bench_io.Copy. time_memcpy-
complex128

bench_io.CopyTo. time_copyto bench_io.CopyTo.
time_copyto_sparse

T
im

e

Benchmark

Memory optimizations for NumPy
Intel(R) Distribution for Python* 2017 Update 2 vs. PSF*

PSF IDP 2017U2

0.8

1

1.2

1.4

1.6

DBN-Kyoto RNNSLU Word Embeddings RNNSLU Word Embeddings LSTM-Sentiment-Analysis

Intel Theano speedup
due to memory optimizations for NumPy

Optimizations for NumPy
umath functions

• Optimized arithmetic/transcendental expressions on NumPy arrays
• Up to 400x better performance due to vectorization & threading
• 180x speedup for Black Scholes formula due to umath optimizations

1

101

201

301

401

Sp
ee

d
u

p

NumPy Umath functions

NumPy Umath Optimizations
Intel(R) Distribution for Python* Update 2/PSF

0

50

100

150

200

Black Scholes Formula
Effect of NumPy Optimizations

U1 - Numpy U2 - Numpy

Choosing right alternative for the
best parallelism

Benchmark: Black Scholes
Formula

• Problem: Evaluate fair European call- and
put-option price, Vcall and Vput, for
underlying stock

• Model Parameters:
– S0 – present underlying stock price

– X – strike price

– - stock volatility

– r – risk-free rate

– T - maturity

• In practice one needs to evaluate many
(nopt) options for different parameters

Good performance benchmark for stressing VPU and memory

Variant 1: Plain Python

0.092

0.0925

0.093

0.0935

0.094

0.0945

0.095

0.0955

0.096

0.0965

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

1
3

1
0

7
2

2
6

2
1

4
4

5
2

4
2

8
8

1
0

4
8

5
7

6

2
0

9
7

1
5

2

4
1

9
4

3
0

4

8
3

8
8

6
0

8

1
6

7
7

7
2

1
6

3
3

5
5

4
4

3
2

6
7

1
0

8
8

6
4

M
O

P
S

<0.1
MOPS

0

50

100

150

200

250

300

350

400

450

500

M
O

P
S

Variant 2: NumPy* arrays and
Umath functions

450
MOPS

0

50

100

150

200

250

300

350

400

450

500

M
O

P
S

Variant 3: NumExpr* (proxy for
Umath implementation)

440
MOPS

0

200

400

600

800

1000

1200

1400

M
O

P
S

Variant 4: NumExpr* (most
performant)

1200
MOPS

0

500

1000

1500

2000

2500

3000

3500

4000

M
O

P
S

Variant 5: Cython*

3400
MOPS

0

1000

2000

3000

4000

5000

6000

M
O

P
S

Variant 5: Native C/C++ vs.
Python variants

4800
MOPS

Numpy

NumExpr

Cython

C/C++

3400
MOPS

1200
MOPS

440
MOPS 0

.
2

Composable parallelism

Composable Multi-Threading
With Intel® TBB

• Amhdal’s law suggests extracting parallelism at
all levels

• If software components do not coordinate on
threads use it may lead to oversubscription

• Intel TBB dynamically balances HW thread loads
and effectively manages oversubscription

• Intel engineers extended Cpython* and Numba*
thread pools with support of Intel® TBB

>python –m TBB myapp.py

Application
Component 1

Component N

Subcomponent 1

Subcomponent 2

Subcomponent K

Subcomponent 1

Subcomponent M

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

MKL

TBB

DAAL

pyDAAL
NumPy
SciPy TBB

Joblib
Dask

Application

P
yt

h
o

n
 p

ac
ka

ge
s

N
at

iv
e

lib
s

Composable Multi-Threading Example:
Batch QR Performance

Numpy
1.00x

Numpy
0.22x

Numpy
0.47x

Dask
0.61x

Dask
0.89x

Dask
1.46x

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

1.2x

1.4x

Default MKL Serial MKL Intel® TBB

Speedup relative to Default Numpy*

Intel® MKL,
OpenMP* threading

Intel® MKL,
Serial

Intel® MKL,
Intel® TBB threading

Over-
subscription

App-level
parallelism

only

TBB-
composable

nested
parallelism

System info: 32x Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel(R) MKL 2017.0 Beta Update 1 Intel(R) 64 architecture, Intel(R) AVX2;
Intel(R)TBB 4.4.4; Ubuntu 14.04.4 LTS; Dask 0.10.0; Numpy 1.11.0.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source:
Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Machine Learning

Skt-Learn* Optimizations With
Intel® MKL

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

Approximate
neighbors

Fast K-means GLM GLM net LASSO Lasso path Least angle
regression,
OpenMP

Non-negative
matrix

factorization

Regression by
SGD

Sampling
without

replacement

SVD

Speedups of Scikit-Learn Benchmarks
Intel® Distribution for Python* 2017 Update 1 vs. system Python & NumPy/Scikit-Learn

System info: 32x Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands
and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Effect of optimizations
in NumPy* and SciPy*

More Scikit-Learn* optimizations
with pyDAAL

• Accelerated key Machine Learning algorithms with Intel DAAL
• Distances, K-means, Linear & Ridge Regression, PCA
• Up to 160x speedup on top of MKL initial optimizations

158.91

2.56

157.94

39.65

5.39 1.57
0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

1Kx150K 1Kx150K 100Kx50, 10 clusters 10Mx25, training 10Mx25, training 1Mx50, 3 components

Correlation Distance Cosine Distance K-means Linear Regression Ridge Regression PCA

Scikit-Learn Optimizations
Due to Intel(R) DAAL

Intel Python 2017 U2 vs. U1

Why you may need pyDAAL in
addition to Scikit-learn

Ideas Behind Intel® DAAL:
Heterogeneous Analytics

• Data is different, data analytics pipeline is the same

• Data transfer between devices is costly, protocols are different
– Need data analysis proximity to Data Source

– Need data analysis proximity to Client

– Data Source device ≠ Client device

– Requires abstraction from communication protocols

Pre-processing Transformation Analysis Modeling Decision Making

Decompression,
Filtering, Normalization

Aggregation,
Dimension Reduction

Summary Statistics
Clustering, etc.

Machine Learning (Training)
Parameter Estimation

Simulation

Forecasting
Decision Trees, etc.

Sc
ie

n
ti

fi
c/

En
gi

n
ee

ri
n

g

W
eb

/S
o

ci
al

B
u

si
n

es
s

Compute (Server, Desktop, …) Client EdgeData Source Edge

Validation

Hypothesis testing
Model errors

Ideas Behind Intel® DAAL: Effective Data Management,
Streaming and Distributed Processing

…

Observations, n

Time

M
em

o
ry

C

ap
ac

it
y

Categorical

Blank/Missing

Numeric

F
e
a
tu

re
s
,
p

Big Data Attributes Computational Solution

Distributed across different devices •Distributed processing with communication-avoiding
algorithms

Huge data size not fitting into device
memory

•Distributed processing
•Streaming algorithms

Data coming in time •Data buffering & asynchronous computing
•Streaming algorithms

Non-homogeneous data •CategoricalNumeric (counters, histograms, etc)
•Homogeneous numeric data kernels
• Conversions, Indexing, Repacking

Sparse/Missing/Noisy data •Sparse data algorithms
•Recovery methods (bootstrapping, outlier correction)

Outlier

Ideas Behind Intel® DAAL:
Storage & Compute

• Optimizing storage ≠ optimizing compute
– Storage: efficient non-homogeneous data encoding for smaller footprint and faster retrieval

– Compute: efficient memory layout, homogeneous data, contiguous access

– Easier manageable for traditional HPC, much more challenging for Big Data

…

Samples, n

V
a
ri
a
b
le

s
,

p

Storage ComputeMemory

Filtering,
conversions,

basic statistics

Data homogenization
and blocking

DAAL DataSource DAAL NumericTable DAAL Algorithm

SIMD

ymm1

ymm3

ymm2

Ideas Behind Intel® DAAL:
Languages & Platforms

DAAL has multiple programming language bindings

• C++ – ultimate performance for real-time analytics with DAAL

• Java*/Scala* – easy integration with Big Data platforms (Hadoop*, Spark*, etc)

• Python* – advanced analytics for data scientist

Performance profiling with
Intel® VTune™ Amplifier

Feature cProfile Line_profiler Intel® VTune™ Amplifier

Profiling technology Event Instrumentation Sampling, hardware events

Analysis granularity Function-level Line-level Line-level, call stack, time windows,
hardware events

Intrusiveness Medium (1.3-5x) High (4-10x) Low (1.05-1.3x)

Mixed language programs Python Python Python, Cython, C++, Fortran

• Right tool for high performance application profiling at all levels
• Function-level and line-level hotspot analysis, down to disassembly

• Call stack analysis

• Low overhead

• Mixed-language, multi-threaded application analysis

• Advanced hardware event analysis for native codes (Cython, C++, Fortran) for cache misses, branch misprediction,
etc.

Profiling Python* code with Intel®
VTune™ Amplifier

Intel® VTune™ Amplifier XE
1. Get a quick snapshot

35

Intel® VTune™ Amplifier XE
2. Identify Hotspots

36

Hottest Functions Hottest Call Stack

Intel® VTune™ Amplifier XE
3. Look for common patterns

Low
Concurrency

Coarse Grain
Locks

Load
Imbalance

High Lock
Contention

Intel® VTune™ Amplifier XE
Navigation through your code

Double Click Function
to View Source

Adjust Data Grouping

… (Partial list shown)

Click [+] for Call Stack

Filter
by Timeline Selection
(or by Grid Selection)

Tuning Opportunities Shown in
Pink. Hover for Tips

Summary And Call To Action

• Intel created the Python* distribution for out-of-the-box performance and
scalability on Intel® Architecture
– With minimum to no code modification Python aims to scale

• Multiple technologies applied to unlock parallelism at all levels
– Numerical libraries, libraries for parallelism, Python code compilation/JITing, profiling

– Enhancing mature Python packages and bringing new technologies, e.g. pyDAAL, TBB

• With multiple choices available Python developer needs to be conscious what
will scale best
– Intel® VTune™ Amplifier helps making conscious decisions

Intel Distribution for Python is free!
https://software.intel.com/en-us/intel-distribution-for-python

Commercial support included for Intel® Parallel Studio XE customers!

Easy to install with Anaconda* https://anaconda.org/intel/

https://software.intel.com/en-us/intel-distribution-for-python
https://anaconda.org/intel/

